
Current Sensor

Model Number

50	H00
100	H00
200	H00
300	H00
400	H00
500	H00
600	H00
	100 200 300 400 500

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- ♦ Open loop current sensor using the Hall effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion losses
- ♦ Small size
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed
- ♦ Uninterruptible Power Supply (UPS)
- ♦ Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- ♦ Power supplies for welding applications
- ♦ Battery management
- ♦ Wind energy inverter

Safety

This sensor must be used according to IEC61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

1/4

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Ис	V	±15.75
Primary conductor temperature	<i>T</i> B	°C	100
ESD rating, Human Body Model (HBM)	Vesd	kV	4

※ Stresses above these ratings may cause permanent damage.

X Exposure to absolute maximum ratings for extended periods may degrade reliability.

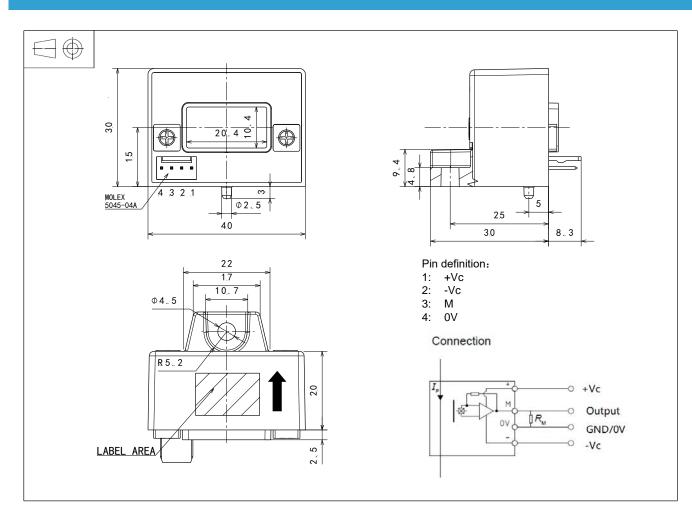
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	<i>T</i> _A	°C	-40		105	
Ambient storge temperature	<i>T</i> s	°C	-40		105	
Mass	т	g		60		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	$V_{\rm d}$	kV	3.6	According to IEC 60664-1
Impulse withstand voltage1.2/50µs	Кw	kV	6.6	According to IEC 60664-1
Clearance (pri sec.)	<i>d</i> cı	mm	6.3	
Creepage distance (pri sec.)	d Cp	mm	7.3	
Plastic case	-	-	UL94-V0	
Comparative traking index	CTI	PLC	3	
Application example	-	-	300V	Reinforced insulation, according to IEC 61800-5-1, IEC 62109-1 CAT ${\rm I\hspace{1em}I}$, PD2
Application example	-	-	600V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1 CAT Ⅲ,PD2

Electrical data


With T_A = 25 °C, V_C = ±15V, R_L = 10kΩ,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Мах	Comment
	len	A	-50		50	HS1V 50 H00
			-100		100	HS1V 100 H00
Primary nominal rms current			-200		200	HS1V 200 H00
			-300		300	HS1V 300 H00
			-400		400	HS1V 400 H00
			-500		500	HS1V 500 H00
			-600		600	HS1V 600 H00
		А	-150		150	HS1V 50 H00
Primary current, measuring range ^{*1}	/ РМ		-300		300	HS1V 100 H00
r mary current, measuring range	ИРМ	~	-600		600	HS1V 200 H00
			-900		900	HS1V 300600 H00
Supply voltage ^{*1}	٧c	V	± 12		± 15	@ 5%
Current consumption	<i>I</i> c	mA		11		
Load resistance	$R_{ m L}$	kΩ	10			
Output voltage(Analog)@I _{PN}	Иоит	V		± 4.000		
Electrical offset voltage	Иое	mV	-30		30	HS1V 50 H00
Liectifical offset voltage			-20		20	HS1V 100600 H00
Tomporature coefficient of V *2	701/		-2		2	HS1V 50 H00
Temperature coefficient of V_{OE} * ²	<i>ТС V</i> ое	mV/K	-1		1	HS1V 100600 H00
	Gth	mV/A		80.00		HS1V 50 H00
				40.00		HS1V 100 H00
				20.00		HS1V 200 H00
Theoretical sensitivity				13.33		HS1V 300 H00
				10.00		HS1V 400 H00
				8.00		HS1V 500 H00
				6.67		HS1V 600 H00
Sensitivity error	\mathcal{E}_{G}	%	-0.5		0.5	Exclusive of V_{0E}
Temperature of G	TCG	%/K	-0.1		0.1	@ -40°℃~105° ℃
Linearity error 0/ _{PN}	<i>E</i> L	% of /⊳ℕ	-0.5		0.5	Exclusive of V_{0E}
Hysteresis offset voltage @/ P =0 after 1 × / _{PN}	Иом	mV	-20		20	
Accuracy@ I _{PN}	X	% of I _{PN}	-1		1	Exclusive of V_{OE}
Response time@ 90% of I _{PN}	<i>t</i> r	μs			3	
Frequency bandwidth(-3dB)	BW	kHz	50			

*1: If $I_{PN} \leq 300A$ and powder supply voltage $V_C = \pm 12V$ current sensor, measurement range reduced to 2.5 times I_{PN} .

*2: Temperature range: -40°C~105°C

Mechanical characteristics

♦	General tolerance Connection of secondary	±0.5 mm Molex 5045-04A
♦	Primary hole Sensor	20.4mm×10.4mm 1pc Ф4.5 mm through-hole 1pc M4 metal screws
	Recommended fastening torque	0.9 N•m (±10%)

Remarks

- ♦ V_{OUT} and I_{P} are in the same direction, when I_{P} flows in the direction of arrow.
- ♦ Temperature of the primary conductor should not exceed 105° C.
- ✤ Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.

www.chipsensor.cn

